Periodic solutions of weakly coupled superlinear systems
نویسندگان
چکیده
منابع مشابه
Periodic Solutions of Superlinear Impulsive Differential Systems
We develop continuation technique to obtain periodic solutions for superlinear planar differential systems of first order with impulses. Our approach was inspired by some works by Capietto, Mawhin and Zanolin in analogous problems without impulses and uses instead of Brouwer degree the much more elementary notion of essential map in the sense of fixed point theory. AMS (MOS) subject classificat...
متن کاملConvergence rate of approximate solutions to weakly coupled nonlinear systems
We study the convergence rate of approximate solutions to nonlinear hyperbolic systems which are weakly coupled through linear source terms. Such weakly coupled 2 × 2 systems appear, for example, in the context of resonant waves in gas dynamics equations. This work is an extension of our previous scalar analysis. This analysis asserts that a One Sided Lipschitz Condition (OSLC, or Lip-stability...
متن کاملOn forced periodic solutions of superlinear quasi - parabolic problems ∗
We study the existence of periodic solutions for a class of quasi-parabolic equations involving the p-Laplacian (or any other nonlinear operators of similar class) perturbed by nonlinear terms and forced by rather irregular periodic in time excitations (including what we call abrupt changes). These equations may model problems for which, aside from the presence of the kind of nonlinear dissipat...
متن کاملPERIODIC SOLUTIONS OF CERTAIN THREE DIMENSIONAL AUTONOMOUS SYSTEMS
There has been extensive work on the existence of periodic solutions for nonlinear second order autonomous differantial equations, but little work regarding the third order problems. The popular Poincare-Bendixon theorem applies well to the former but not the latter (see [2] and [3]). We give a necessary condition for the existence of periodic solutions for the third order autonomous system...
متن کاملPeriodic Solutions for Perturbed Hamiltonian Systems with Superlinear Growth and Impulsive Effects
The aim of this paper is to prove the existence of periodic piecewise continuous solutions for impulsive planar differential systems having the form of a perturbed Hamiltonian. The proof relies on a continuation technique introduced in [1] and adapted for impulsive equations in [2].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2016
ISSN: 0022-0396
DOI: 10.1016/j.jde.2015.09.056